
Chapter 6 

Ant Colony Search Algorithms in Power System Optimization 

Abstract: This chapter presents a novel co-operative agents 
approach, Ant Colony Search Algorithm (ACSA). The main 
purpose of this chapter is to introduce the applicability of an 
alternative intelligent search method in power system optimization. 
The ACSA is derived from the theoretical biology on the topic of 
ant trail formation and foraging methods. In the ACSA, the state 
transition rule, global and local updating rules are also introduced to 
ensure the optimal solution. Once all ants have completed their 
tours a global pheromone updating rule is then applied and the 
process is iterated until the stop condition is satisfied. The 
effectiveness of the proposed scheme has been demonstrated on the 
daily generation scheduling problem of model power systems. 

Index Terms: Ant colony search algorithm, optimization, short-term 
generation scheduling, combined heat and power dispatch. 

1. INTRODUCTION

There are a large number of different combinatorial 
optimisation problems facing electricity utilities. The 
deregulation of electricity supply industry world-wide adds 
ever growing motivations to develop new optimisation 
algorithms so as to design best strategies for most effectively 
utilising the asset under increasing commercial pressure. 
Various algorithmic and heuristic approaches [1 - 3] have 
been adopted or investigated by power engineers. These 
include lambda-iteration method, the gradient method, 
Lagrangian relaxation, benders decomposition, interior point 
method, linear programming and dynamic programming etc. 
More recently heuristic techniques such as artificial neural 
networks, simulated annealing, tabu-search and evolutionary 
computing have also been intensively investigated. In 
particular, for the last few years there has been a growing 
interest in algorithms inspired by the observation of natural 
phenomena to help solve complex computational problems. 
In this chapter, a novel co-operative agent algorithm, 
Artificial Ant Colony Search Algorithm (ACSA), which was 
inspired by the observation of the behaviour of ant colonies 
is investigated. Ant Colony Search Algorithms (ACSAs) 
have recently been introduced as powerful tools to solve the 
order based problems such as travelling salesman problem 
(TSP) and quadratic assignment problem [4]. This chapter 
presents feasibility studies of its potential applications in 
power systems carried [5 – 8]. 

2. ANT COLONY ALGORITHM

It will be useful to understand how ants, which are almost 
blind animals with very simple individual capacities acting 

together in a colony, can find the shortest route between the 
ant’s nest and a source of food.  

2.1. Behavior of Real Ants 

The ant colony search algorithms mimic the behaviour of 
real ants. As is well known, real ants are capable of finding 
shortest path from food sources to the nest without using 
visual cues. They are also capable of adapting to changes in 
the environment, for example, finding a new shortest path 
once the old one is no longer feasible due to a new obstacle. 
The studies by ethnologists reveal that such capabilities ants 
have are essentially due to what is called "pheromone trails" 
which ants use to communicate information among 
individuals regarding path and to decide where to go. Ants 
deposit a certain amount of pheromone while walking, and 
each ant probabilistically prefers to follow a direction rich in 
pheromone rather than a poorer one.  

The process can be clearly illustrated by Fig. 1. In Figure 
1a ants are moving on a straight line which connects a food 
source to the nest. Once an obstacle appears as shown in Fig. 
1b, the path is cut off. Those ants that are just in front of the 
obstacle cannot continue to follow the pheromone trail and 
therefore it can be expected that they have the same 
probability to turn right or left. In Fig. 1c, these ants that 
choose by chance the shorter path around the obstacle will 
more rapidly reconstitute the interrupted pheromone trail 
compared to those that choose the longer path. Hence, the 
shorter path will receive a higher amount of pheromone in 
the time unit and this will in turn cause a higher number of 
ants to choose the shorter path. Due to this positive feedback 
(autocatalytic) process, very soon all ants will choose the 
shorter path. 
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Fig. 1. The behaviour of real ants. (a) ants travel the 
shortest path; (b) an obstacle breaks the path; (c) ants choose 
the sorter path. 
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2.2. A Simple Ant Colony Algorithm 

The structure of the simple Ant Colony Search Algorithm 
is shown in Fig.  2. It has the following major steps: 

 
 
 
 
 
 
 
 
 
 
 
     Termination    No 
            ? 
     
 
 

Fig. 2. Structure of simple ACSA. 
 

• (1) Initialize A(t): The parameters to be optimized 
are encoded as a real number. Before each run, the initial 
populations (Nest) of the colony are generated randomly 
within the feasible region which will crawl to different 
directions at a radius not greater than R. 

 
• (2) Evaluate A(t): The fitness of all ants are 

evaluated based on their objective function.  
 

• (3) Add_trail: Trail quantity is added to the 
particular directions the ants have selected in proportion 
to the ants’ fitness. 

 
• (4) Send_ants A(t): According to the objective 

function, their performance will be weighed as fitness 
value which influences the level of trail quantity addition 
to the particular directions the ants have selected. Each 
ant chooses the next node to move taking into account 
two parameters: the visibility of the node and the 
intensity of trail previously laid by other ants. The 
send_ants operation sends ants by selecting directions 
using Tournament selection based on the two 
parameters. The k-th ant starting from node i decides to 
move to node j on the basis of probability  defined as 

follows: 
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Where: visibility, 

η µij = - F∆                                                             (2) 

Move value, ∆F = original total cost - new total cost  
t: =0 µ α β, , are the heuristically defined parameters. µ is 

used for cost setting, 0< α <1 is a pheromone decay 
parameter and β  is a parameter which determines the 
relative importance of pheromone versus distance. 

Initialize 

 
Add_trail 

Send_ants 

Evaporate 

Evaluate Intensity trail,  ijτ ( )t on edge (i,j) at time t. Each ant at 

time t chooses the next node, where it will be at time t+1. For 
1 iteration of ant colony search algorithm, m moves are 
carried out by m ants in the interval (t, t+1), then for every n 
iterations of the algorithm each ant has completed a tour. At 
this point the trail intensity is updated as: 

t:=t+1 
Yes 
End 

τ ρ τ τij ij ijt n t( ) ( )+ = ⋅ + ∆   (3) 

where: ρ  is a coefficient of persistence of the trail during 
a cycle which is heuristically defined. 
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    (4) 

where: is the quantity of substance laid on edge (i,j) 

by the k-th ant between time t and t+n.  

∆τ ij
k

• (5) Evaporate: Finally, the pheromone trail 
secreted by an ant eventually evaporates and the starting 
point (nest) is updated with the best tour found. 

2.3. Major Characteristics of Ant Colony Search Algorithm  

There are some attractive properties of ant colony search 
algorithm when compared with other methods:  

Distributed Computation - Avoid Premature 
Convergence: Conventionally, scientists choose to work on 
system simplified to a minimum number of components in 
order to observe essential information. Ant colony search 
algorithm often simplifies as much as possible the 
components of the system, for the purpose of taking into 
account their large number. The power of the massive 
parallelism in ACSA is able to deal with incorrect, 
ambiguous or distorted information which are often found in 
nature. The computational model contains the dynamics 
which is determined by the nature of local interactions 
between many elements (artificial ants). 

 
Positive Feedback - Rapid Discovery of Good Solution: 

The unique inter-ant communication involves a mutual 
information sharing while solving a problem. Occasionally, 
the information exchanged may contain errors and should 
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alter the behaviour of the ants receiving it. As the search 
proceeds, the new population of ants often containing the 
states of higher fitness will affect the search behaviour of 
others and will eventually gain control over other agents 
while at the same time actively exploiting inter-ant 
communication by mean of the pheromone trail laid on the 
path. The artificial ant foraging behaviour dynamically 
reduces the prior uncertainty about the problem at hand. As 
ants doing a task can be either “successful” or “unsuccessful” 
they can switch between these two according to how well the 
task is performed. Unsuccessful ants also have a certain 
chance to switch to be inactive, and successful ants have a 
certain chance to recruit inactive ants to their task. Therefore, 
the emerging collective effect is in a form of autocatalytic 
behaviour, in that the more ants following a particular path, 
the more attractive this path becomes for the next ants that 
meet. It can give rise to global behaviour in the colony. 

 
Use of Constructive Greedy Heuristic - Find Acceptable 

Solutions In The Early Stage of The Process: Based on the 
available information collected from the path (pheromone 
trail level and visibility), the decision is made at each step as 
a constructive way by the artificial ants, even if each ant’s 
decision always remains probabilistic. It tends to evolve a 
group of initial poorly generated solution to a set of 
acceptable solutions through successive generations. It uses 
objective function to guide the search only, and does not 
need any other auxiliary knowledge. This greatly reduces the 
complexity of the problem. The user only has to define the 
objective function and the infeasible regions (or obstacle on 
the path).  

3.  CASE STUDIES 

3.1. Case Study 1 - Short-Term Generation Scheduling 
Technique of Thermal Units 

To supply a high quality of electric energy to the consumer 
in a secure and economic manner, electric utilities face many 
economical and technical problems in operation, planning 
and control of electric energy systems. One of the major 
problems is to determine the most economic and secure way 
of short-term generation scheduling and dispatch under given 
constraints. Various approaches were proposed for solving 
the short-term generation scheduling problems [10].  

The main objective of the short-term generation 
scheduling problem is to determine the output of thermal 
units so as to obtain a minimum total cost over a period of 24 
hours subject to a set of constraints, which arise from the 
system security requirements and restrictions on the 
operation of the units. The objective function to be 
minimized can be written as 

 
Minimiz 
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where, : number of generating units G
T : the time horizon of interest (24 hours) 
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Pij  : real power output of the ith unit in the jth stage 
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where,  are the total demand and the transmission 

loss in the area at the jth stage. 
P PDj Lj,

 
(b) real power operating limits of generating units 
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where, are the minimum and the maximum real 
power outputs of the ith unit 

P Pi i
min max,

  
(c) spinning reserve constraint 
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where,  is the status index of the ith unit at the  jth stage 

(1 for up and 0 for down). 

uij

 
(d) minimum up time of units 
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( )( ) , ,, ,u u w h i G j Tij i j i j i− − ≤ ∈− −1 1 0 ∈τ   (11) 

 
where, τhi  is the minimum up time of the ith unit and  
 

w u wi ij i j= +−( ), 1 1
   (12) 

 
(e) minimum down time of units 
 

( )( ) , ,, ,u u q l i G j Tij i j i j i− − ≥ ∈− −1 1 0 ∈τ      (13) 

 
where, τli   is the minimum down time of the ith unit and  
 

q u qij ij i i= − +−( )( ,1 11 )                  (14) 

 
(f) maximum operating time of units 
 

u v u i G j Tij i j i, ,( ) , ,− − ≤ ∈ ∈1 0τ        (15) 

 
where, τui  is the maximum operating time of the ith unit 

and  
 

v u vij ij i j= +−( , 1 1)                (16) 

 
To consider all the constraints mentioned above, the 

generation scheduling problem could be modelled in a form 
of dynamic process as follows.      
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Equation (17) is the minimal total operational cost to arrive 
at the state (  from () )j lU j kU−1 . In equation (18), the first, 
second and third terms represent the total production fuel 
cost of a state, start-up and shut-down costs of units, 
respectively. The fourth term represents the penalty cost 
imposed when any of transition constraints are violated, and 
the last term is the minimum total accumulated cost to reach 
to the state (   from the initial stage. The constraints 
represented by (a) - (f) will be treated in different ways. The 
operational constraints (a), (b) and (c) are handled using 
conventional economic load dispatch module for each state 
while the search space is being formed, and the transition 
constraints (d), (e) and (f) will be considered during the 
process of state transition by the dynamic programming (DP) 
based conventional method to get reference results, and the 
ACSA based technique to obtain final solution results. The 
penalty cost will also be applied for the violated transition 
constraints in the same process. Here, the solution procedure 
should be slightly modified so that the ACSA can easily be 
adopted. The ACSA works in this application, combined 
with the DP process, as follows: 

)j lU

• form the travelling salesman type of search space 
for the Generation Scheduling Problem (GSP) 

• m ants are initially positioned on n states chosen 
according to some initialisation rule 

• each ant builds a tour by repeatedly applying the 
state transition rule 

• while constructing its tour, an ant changes the 
amount of pheromone on the visited edges by applying 
the local updating rule 

• once all ants have terminated their tour, the 
amount of pheromone modified again by applying the 
global updating rule 

• seek the best tour using the solution process, in 
which ants are guided in building their tours by both 
heuristic information and by pheromone information. An 
edge with a high amount of pheromone is a very 
desirable choice  

• the pheromone updating rules are designed so that 
they tend to give more pheromone to edges which 
should be visited by ants 

 
The overall flow of the proposed ACSA based technique 

for GSP is briefly given in Figure 3 
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Fig. 3. Flow of ACSA based technique. 

 
This proposed method deals with a 24-hour generation 

scheduling or allocation problems. Application results of the 
proposed algorithm to 6-unit model power system are 
presented. The system data are given in ref [7]. 

 
Figure 4 shows the generation schedules the total capacity 

of the 6-unit system obtained by the two algorithms, Hybrid 
Dynamic Programming (HBDP) and ACSA. The difference 
in the generation cost is illustrated in Figure 5, and the total 
generation cost of the two methods are $187,116.7 for HBDP 
and $184,841.5 for ACSA, respectively. All the results show 
that ACSA can achieve almost the same results as obtained 
by the HBDP. 

 

. 
 

 

Fig. 4. Comparison of scheduled total capacities 

 

 

Fig. 5. Comparison of generation costs of the 6-unit system. 

3.2 Case Study 2 - Combined Heat and Power Dispatch 

Combined heat and power (CHP) generation is an 
established and mature technology which has energy 
efficiency and environmental advantages over other forms of 
energy supply. The benefits of real-time optimization of 
power generation and CHP can be significant. However, the 
multiple-demand and the mutual dependencies of heat-power 
capacities  introduce a complication in integrating co-
generation units into the power system economic dispatch. 
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The combined heat and power dispatch problem in a 
system is to determine the unit heat and power production so 
that the system production cost is minimized while the heat 
and power demands and other constraints are met. The power 
outputs of electricity units and heat units are restricted by 
their own upper and lower limits. The CHP dispatch problem 
can be formulated as follows: 

Minimize  

∑ ∑ ∑
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cjjjjj njphhph ,...,1),()( maxmin =≤≤    (25) 

hkkk nkhhh ,...,1,maxmin =≤≤   (26) 

 
where c is the unit production cost; p is the unit power 
generation; h is the unit heat production; hd , pd are the 
system heat and power demands; i, j and k are the indices of 
conventional power units, co-generation units and heat-only 
units respectively; np, nc and nh are the corresponding 
numbers of the types of units ; pmin , pmax , hmin and hmax are 
the minimum and maximum unit power capacity and heat 
capacity limits, respectively.  

 
In the heat-power feasible operation region of a combined 

cycle co-generation unit, the power outputs and heat outputs 
are restricted by their own upper and lower limits which in 
some states changing one would affect the other. It is obvious 
that the complication arising in the CHP economic dispatch 

is the mutual dependencies of extra constraints than in pure 
economic dispatch. 

 
A test system containing a set of 4 generators [8] is used to 

illustrate the performance of the proposed method. Unit 1 is 
for power generation only and unit 4 for heat generation 
only. Units 2 and 3 are co-generation units. The 
corresponding production cost functions are given below. 

 

11 50pc =                                                     (27) 

 

22
2
22

2
222 031.003.02.40345.05.142650 hphhppc +++++=

 (28) 

 

33
2
33

2
333 011.0027.06.00435.0361250 hphhppc +++++=

 (29) 

 

44 4.23 hc =  (30) 

 
 
 
The constraints for units 1 and 4 are 

MWp 1500.0 1 ≤≤  (31) 

MWthh 2.26950.0 4 ≤≤  (32) 

And the constrains for units 2 and 3 are defined in Figs.  6 
and 7. 
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Fig. 6. Heat-power feasible region for the co-gen. unit 2. 
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The following ACSA parameters are chosen for this 

particular problem: 
 
Number of ants =10; Max Generation number=100; 

Number of intermediate steps=5, α  = 0.5, β  = 0.05, µ  = 
10, ρ  = 0.5, Q = 50. 

 
The ACSA decomposes the problem into 2-stages [1], the 

outer layer contains the power dispatch which is solved by 
the ACSA. The inner layer solves the heat dispatch with the 
unit heat capacity limits passed by the outer layer. The 
binding constraints in the heat dispatch solution are, 

therefore, fed back to the outer layer to modify the unit 
power incremental costs of co-generation units. 

 
The system power and heat demands are 200MW and 115 

MWth, respectively. Table 1 lists the results by reference [9] 
and the proposed method, which are close to each other. The 
evolutionary process illustrated in Figure 8 shows the 
collective behavior speeding up the whole process as the 
number of ant increases. 
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Table 1. Test Results in comparison with a GA-based approach. 

 Unit 1 

power 

Unit 2 

power 

Unit 2 

heat 

Unit 3 

power 

Unit 3 

Heat 

Unit 4 

heat 

Total   

Power 

Total 

Heat 

Total Cost ($)

Ref. 
[9] 

0.00 160.00 40.00 40.00 75.00 0.00 200.00 115.00 9527.00 

ACSA 0.08 150.93 48.84 49.00 65.79 0.37 200.00 115.00 9452.20 
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4.  CONCLUSIONS 

This paper presents the applications of a search 
methodology - Ant Colony Search Algorithm - based on a 
distributed autocatalytic process. The individual ants are 
rather simple, however, the entire colony foraging towards 
the bait site can exhibit complicated dynamics resulting in 
a very attractive search capability. The results obtained 
clearly show the Ant Colony Search Algorithm converges 
to the optimum solution through an autocatalytic process. 
The massive parallel agent co-operation makes the ants 
able to jump over the local optimum and to identify the 
right cluster easily, hence, a good solution can be found. 
Its feasibility in power system optimization has been 
demonstrated in two examples. 
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